
● Flare is a query accelerator built for Apache Spark
● Achieves order of magnitude speedups on DataFrame and SQL workloads
● Flare compiles optimized query plans generated by Catalyst (in-built query

optimizer for Apache Spark) to native code
● Leverages Lightweight Modular Staging (LMS) to generate native code

End-to-end Optimization for High-performance Machine
Learning Pipelines

Supun Abeysinghe, Fei Wang, Tiark Rompf

 Motivation
● Deploying cutting edge machine learning (ML) models at scale requires

ingesting data from various sources.

● Today, this data preprocessing is typically implemented using separate tools
like Pandas or Spark that then feed into PyTorch or TensorFlow.

● While these ML systems go to great lengths to optimize the performance of
the ML kernels, large amounts of performance are lost when data needs to
move from one framework to another.

 In this work...
● We present a common runtime system for an end-to-end high-performance

ML pipeline
● Integrates two systems that are built around the central theme of runtime

compilation and native code generation.
○ Flare - an accelerator for Spark SQL, used for data manipulation
○ Lantern - an accelerator for TensorFlow and PyTorch, used for building ML

models
● Leverages the power of Lightweight Modular Staging (LMS) for runtime

code generation.
● The resultant system generates a globally optimized end-to-end compiled

data path that would perform the entire process from data preprocessing to
training and inference

● Eliminates the interaction overhead between systems without the need for
sacrificing program expressivity.

 Flare Lantern
● Lantern is a highly expressive machine learning framework written in Scala

● Attains the performance of “define-then-run” machine learning frameworks
like Tensorflow while preserving expressiveness of “define-by-run”
frameworks such as PyTorch

● Backpropagation is implemented using functions with callbacks; where
forward pass is executed as a sequence of function calls and the backward
pass with the corresponding function returns (uses CPS in particular)

● Leverages Lightweight Modular Staging (LMS) to generate low-level
(C/CUDA) code

 Flare + Lantern

Figure 2 : Performance comparison of Postgres, HyPer, Spark SQL, Flare in TPC-H (SF10) (from: Essertel et al OSDI’18)

Scala Python ... SQL

Spark SQL DataFrame API

Catalyst Optimizer

Spark
Resilient Distributed Dataset (RDD)

Code Generation

Spark SQL

Export query plan
Code Generation

Flare Runtime

Flare
Figure 1 : Flare system overview

Figure 3 : Running time of SqueezeNet and ResNet50 for different frameworks (from: Fei et al ICFP ‘19)

val df1 = spark.read(...)
val df2 = spark.read(...)
val df3 = spark.read(...)

val df4 = df1.withColumn
(“ratio”, x / y).withColumn(..)..

query = spark.sql(“SELECT ….
FROM …. JOIN ... USING …
ORDER BY …...”)

data =
flare.executeQuery(query)

class NNModel {
 ……..
}

opt = SGDOptimizer()
model = NNModel()

for (i <- 0 until nIter) {
 data.forEachBatch { input =>
 loss(model(input))
 opt.step()
 }
}

Flare LMS
Low-level
code (C)

Lantern LMS
Low-level

code
(C/CUDA)

LMS

Low-level
code for

the
end-to-end

task
(C/CUDA)

Figure 4 : Flare + Lantern system overview

 Experiments
● Prior experiments have shown promising results on using Flare in conjunction

with Tensorflow
● For a simple case where Tensorflow classifier is used as a Spark UDF, Flare

produced over 1,000,000x speed up! for some cases

● Our preliminary experiments show significant potential gains (18x speed up)
for the proposed system

Scala/Python Source

Pandas/
Spark

Tensorflow/
PyTorch

Figure 5 : Running time (ms) of a query containing a TF classifier as an UDF (from: Essertel et al OSDI ‘18)

Perfo
rmance!

Figure 6 : Total Running time (ms) for a basic regression task (Fuel efficiency prediction) taken from TF documentation

