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Motivation

e Deploying cutting edge machine learning (ML) models at scale requires
iIngesting data from various sources.

e Today, this data preprocessing is typically implemented using separate tools
like Pandas or Spark that then feed into PyTorch or TensorFlow.

e \While these ML systems go to great lengths to optimize the performance of
the ML kernels, large amounts of performance are lost when data needs to
move from one framework to another.

Tensorflow/
PyTorch

e \We present a common runtime system for an end-to-end high-performance
ML pipeline

e Integrates two systems that are built around the central theme of runtime
compilation and native code generation.

o Flare - an accelerator for Spark SQL, used for data manipulation
o Lantern - an accelerator for TensorFlow and PyTorch, used for building ML
models

e |everages the power of Lightweight Modular Staging (LMS) for runtime
code generation.

e The resultant system generates a globally optimized end-to-end compiled
data path that would perform the entire process from data preprocessing to
training and inference

e Eliminates the interaction overhead between systems without the need for
sacrificing program expressivity.

Lantern

e Flare is a query accelerator built for Apache Spark

e Achieves order of magnitude speedups on DataFrame and SQL workloads

e Flare compiles optimized query plans generated by Catalyst (in-built query
optimizer for Apache Spark) to native code

e |everages Lightweight Modular Staging (LMS) to generate native code
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Figure 1 : Flare system overview
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Figure 2 : Performance comparison of Postgres, HyPer, Spark SQL, Flare in TPC-H (SF10) (from: Essertel et al OSDI'18)

Flare + Lantern
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Figure 4 : Flare + Lantern system overview

e Lantern is a highly expressive machine learning framework written in Scala

e Attains the performance of “define-then-run” machine learning frameworks
like Tensorflow while preserving expressiveness of “define-by-run”
frameworks such as PyTorch

e Backpropagation is implemented using functions with callbacks; where
forward pass is executed as a sequence of function calls and the backward
pass with the corresponding function returns (uses CPS in particular)

e |Leverages Lightweight Modular Staging (LMS) to generate low-level
(C/CUDA) code
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Figure 3 : Running time of SqueezeNet and ResNet50 for different frameworks (from: Fei et al ICFP ‘19)

e Prior experiments have shown promising results on using Flare in conjunction
with Tensorflow

e For a simple case where Tensorflow classifier is used as a Spark UDF, Flare
produced over 1,000,000x speed up! for some cases
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Figure 5 : Running time (ms) of a query containing a TF classifier as an UDF (from: Essertel et al OSDI ‘18)

e Our preliminary experiments show significant potential gains (18x speed up)
for the proposed system
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Figure 6 : Total Running time (ms) for a basic regression task (Fuel efficiency prediction) taken from TF documentation




