PURDUE

UNIVERSITY,

End-to-end Optimization for High-performance Machine

Learning Pipelines
Supun Abeysinghe, Fei Wang, Tiark Rompf

Motivation

e Deploying cutting edge machine learning (ML) models at scale requires
iIngesting data from various sources.

e Today, this data preprocessing is typically implemented using separate tools
like Pandas or Spark that then feed into PyTorch or TensorFlow.

e \While these ML systems go to great lengths to optimize the performance of
the ML kernels, large amounts of performance are lost when data needs to
move from one framework to another.

Tensorflow/
PyTorch

e \We present a common runtime system for an end-to-end high-performance
ML pipeline

e Integrates two systems that are built around the central theme of runtime
compilation and native code generation.

o Flare - an accelerator for Spark SQL, used for data manipulation
o Lantern - an accelerator for TensorFlow and PyTorch, used for building ML
models

e |everages the power of Lightweight Modular Staging (LMS) for runtime
code generation.

e The resultant system generates a globally optimized end-to-end compiled
data path that would perform the entire process from data preprocessing to
training and inference

e Eliminates the interaction overhead between systems without the need for
sacrificing program expressivity.

Lantern

e Flare is a query accelerator built for Apache Spark

e Achieves order of magnitude speedups on DataFrame and SQL workloads

e Flare compiles optimized query plans generated by Catalyst (in-built query
optimizer for Apache Spark) to native code

e |everages Lightweight Modular Staging (LMS) to generate native code

‘ I

i : =Xport query plan E »| Code Generation i

- i i v |

E I A v i | Flare Runtime i

| Spark ! | |

! Resilient Distributed Dataset (RDD) I | ! [
Spark SQL Flare

Figure 1 : Flare system overview

- 1x10° PostgreSQL Spark m— HyPer Flare

§,100000

g 10000

1000

,E’ 100

c

= 10

=

o 1

Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8 Q Q10 Q11 Q12 Q13 Q4 Q15 Q6 Q17 Q18 Q19 Q20 Q21 Q22
SF10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 013 Q14 015 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Postgres 72599 5064 20790 6032 17904 9071 16408 20003 31728 16409 4729 15755 16152 9369 9607 5662 66254 30104 12852 22795 184736 6900
Spark SQL |17692 21062 28039 20693 40008 2826 28262 55346 98216 27585 16193 15431 25632 5913 11538 30973 66089 47542 11062 27448 78896 8687
HyPer 498 47 969 725 821 207 804 467 1782 846 111 460 3307 283 227 1112 485 3061 1666 345 1349 177
Flare 550 98 481 544 527 212 596 1016 2688 1429 53 643 3499 256 175 679 1924 1150 2236 836 1533 241

Figure 2 : Performance comparison of Postgres, HyPer, Spark SQL, Flare in TPC-H (SF10) (from: Essertel et al OSDI'18)

Flare + Lantern

Scala/Python Source
(@)

val df1 = spark.read(...)
val df2 = spark.read(...)
val df3 = spark.read(...)

val df4 = df1.withColumn
(“ratio”, x / y).withColumn(..)..

—_ —

query = spark.sql(“SELECT e / |
FROM ... JOIN ... USING ...

ORDER BY")
dat Low-level
ata =
flare.executeQuery(query) CO?heefOF
classNNModel{ end-to-end
- ok
} (C/CUDA)

opt = SGDOptimizer()

e —— ————

model = NNModel() S - " Low-level !
YU ! |

for (i <- 0 until nlter) { LMS S
data.forEachBatch { input => | (C/CUDA) :

loss(model(input))

opt.step()
}
}

Figure 4 : Flare + Lantern system overview

e Lantern is a highly expressive machine learning framework written in Scala

e Attains the performance of “define-then-run” machine learning frameworks
like Tensorflow while preserving expressiveness of “define-by-run”
frameworks such as PyTorch

e Backpropagation is implemented using functions with callbacks; where
forward pass is executed as a sequence of function calls and the backward
pass with the corresponding function returns (uses CPS in particular)

e |Leverages Lightweight Modular Staging (LMS) to generate low-level
(C/CUDA) code

SqueezeNet ResNet50
10
2:5
8
2.0
(3} 2}
= e b
o l> o
o o
0, Y oa
1.0 v
0.5 2
0.0 | — 0 —
Lantern PyTorch TensorFlow Lantern PyTorch TensorFlow

Figure 3 : Running time of SqueezeNet and ResNet50 for different frameworks (from: Fei et al ICFP ‘19)

e Prior experiments have shown promising results on using Flare in conjunction
with Tensorflow

e For a simple case where Tensorflow classifier is used as a Spark UDF, Flare
produced over 1,000,000x speed up! for some cases

1x10°} spark SQL e

100000} Spark JNI
Flare

10000y
1000}
100§
10}
1 k

0.1 =

200 = 2000
Data Points

Figure 5 : Running time (ms) of a query containing a TF classifier as an UDF (from: Essertel et al OSDI ‘18)

e Our preliminary experiments show significant potential gains (18x speed up)
for the proposed system

200000
150000
100000

50000

Running time (ms)

Pandas Flare +
+ TF Lantern

Figure 6 : Total Running time (ms) for a basic regression task (Fuel efficiency prediction) taken from TF documentation

